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realization  methods  for  the  BLMS  ADF’s  using  the  FNT  and  the 
FFT have been  compared.  Since  the  computation  of  the  FNT  is 
much  faster  than  the  computation of the  FFT,  one  can  conclude  that U” 
the  FNT  realization of BLMS  ADF  is  computationally  more effi- 
cient  than  the  FFT  realization.  Also,  through  the  computer  simu- 
lation  of  three  practical  applications,  the  convergence  properties  of 
the  BLMS  ADF’s  using  the  FNT  and  using  the fixed-point FFT 
have  been  evaluated.  The  results of the  simulation  strongly  indicate 
that  the  performance  of  the  BLMS  ADF’s  using  the  16-bit  FNT  are 
comparable  to  those  corresponding  to  the  infinite  precision  FFT 
case,  while  the  performances of the  BLMS  ADF’s  using  the  fixed- 
point FFT (such as 8-bit FFT)  degrade  fast  as  the  transform  length 
increases.  Consequently,  for  the  applications  which  require  reali- 
zation of an  ADF with  limited  word  length,  the  FNT  provides  an 
efficient  realization  method  with  good  convergence  properties. 
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On Iterative Evaluation of Extrema of Integrals of 
Trigonometric  Polynomials 

ROBERT J. MARKS, I1 AND TONYA  REIGHTLEY 

Abstrct-An iterative algorithm for  evaluation of extrema of inte- 
grals of polynomials is presented. Each iteration requires two Fourier 
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transforms instead of the matrix multiplication that is conventionally 
used. For rectangular windows, the results are eigenvalues of digital 
prolate functions. The corresponding eigenfunctions are also gener- 
ated. 

INTRODUCTION 
In  this  correspondence,  we  present  an  algorithm  to  either  mini- 

mize  or  maximize 
TI2 

a = s u(t)ly(t)l2 dt 
E -TI2 

(1) 

where  u(t)is  a  specified  real  function, y ( t )  is a ( 2 M  + 1)st-order 
trigonometric  polynomial 

M 

y(t) = y[n] ejnwot; wo = 27dT 
n =  -M 

and 
R T/2 

E = J (y(t)12 dt. 
- TI2 

The  maximum  and  minimum of (1)  will  be  denoted,  respectively, 
by Z and s. 

Define p , ( t )  as unity  for It( < r and  zero  elsewhere.  For 
u(t)  = p,(t) (with 7 < T / 2 ) ,  the  extrema of (1) correspond  to  the 
extrema of eigenvalues of appropriately  parameterized  digital  pro- 
late  functions [ 11, [ 2 ] .  Applications  include  digital  filter  design [3]- 
[5] and  spectral  estimation  [6].  The  analog  equivalent of the  prob- 
lem  has  been  considered  for  rectangular [ 1, pp. 205-2121, [ 7 ] ,  [ 8 ] ,  
and  triangular [9]  shaped u( t ) ’ s .  

Papoulis [1] has  shown  that  the  extreme  solutions  of  (1)  are  the 
extrema  of  the  eigenvalues  of  the  Toeplitz  set of equations 

l!,i c u[n - k]   y [k]  = hy[n] ;  jnj I M ( 2 )  
k =  -M 

where u[n] is  the  nth  Fourier  coefficient  of u(t)  for It1 I T / 2 .  Thus, 
E = A,,, and = Amin. Note  that  if we define O(t) = 1 - u(t) ,  
then D[n] = 6[n] - u [ n ] .  Substituting  into ( 2 ) ,  we  see  that  the 
maximum  eigenvalue  corresponding  to 0 is  the  minimum  eigen- 
value  corresponding to u .  Hence,  only  an  algorithm  for  finding 
maximum  values  is  needed. 

FOURIER  ALGORITHM 
An  iterative  algorithm  for  finding Z and  the  corresponding y ( t )  

is  shown  in  Fig. 1. Beginning  with  some  initialization, we form  the 
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trigonometric  polynomial 

where N parameterizes  the  iteration.  This  is  multiplied by u(?) to 
form  the  function 

M 

wN (t) = (t)u(t)  = C wN[n] ejnwot 

Multiplication  of  periodic  functions  is  equivalent  to  convolving  their 
Fourier  coefficients.  Hence, 

n = - M  

M 

wfV[nl = ,=c_, utn - kl Yh;[kl. (3) 

We keep  only  the In1 5 M terms  and  normalize  to  a  unit  norm: 

where 
M 

The cycle  is  again  repeated.  Under  very  loose  conditions, y m ( t )  
maximizes  (1)  with Z = a. 

The  proof  is  straightforward.  Combining (3) and (4) gives 

The  proof  follows  immediately  from Von Mises’  theorem  [lo]. 
If Iu( t ) l  1 5 1, the  only  step  in  Fig.  1  that  adds  energy  is  nor- 

malization by E,v. Without  this  step,  the  algorithm  would  converge 
to  zero. We can, however,  perform,  say, P iterations  without  nor- 
malizing,  and  then  normalize  on  the P + 1st  iteration.  The  result 
would  clearly  be  the  same  as if we normalized  in  each of the P + 
1 iterations. 

Convergence of the  Fourier  algorithm  can  be  bettered  further by 
employing  techniques  applicable  to  the  accelerated Von Mises 
method,  e.g.,  Wilkerson’s  method  or  relaxation  parameters  [ll]. 
For  a  given  problem,  the Von Mises  technique  requires  one  matrix- 
matrix  multiplication  per  iteration.  The  Fourier  algorithm  requires 
two  more  computationally  efficient  Fourier  transforms  (FFT’s). 
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Correction to “Long Convolutions Using Number 
Theoretic and Polynomial Transforms” 

G. MARTINELLI 

In  the  above  paper,’  the  following  corrections  should  be  made  in 
Fig. 1. 

The  block  “decomposition by polynomial  transforms of the  poly- 
nomial. . . , the block  “reduction of H ( z ) X ( z )  mod ( zB + l),” and 
the  block  “exchange 2 * z and  transfomation of the  polynomial 
products. . . ” should  be  replaced by a  unique  block  and  should  read 
as follows. 

Decomposition by polynomial  transforms  of  the  polynomial 
products  mod(zZh + 1],2bb+,+ 2 5 h 5 ? - 1, into 2 t - b  - 4 poly- 
nomial  products  mod(z + l ) ,  i.e., 

Hj(z)Xi(z) mod ( z * ~ + ’  + l ) ,  i = 1, 2 ,  * . ~ 2 ‘ - ~  - 4. 

The  block  “computation of the  convolutions  of  length B mod(Fb) by 
FNT”  should  read: 

Hi(z)Xi(z) mod (z26+2 - 1) 
computation  of  the  convolutions by  the  FNT. 

The  block  “exchange z * 2” should  read: 

reductions  mod (2Zb+’ + 1). 

The block  “computation of the  convolution  of  length B mod ( 2  - 
1)” should  read: 

computation of the  convolution  by  the  FNT 

Finally,  the  quantity B must  be  replaced by 2’ +’. 
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Passive Depth Tracking of Underwater 
Maneuvering Targets 

R. L. MOOSE AND P. M. GODIWALA 

Abstract-As a parallel extension to the adaptive range tracking of 
underwater targets described by Moose and Dailey [ l l ,  this paper dis- 
cusses the problem of tracking the depth of a maneuvering target using 
passive  time-delay measurements. The target is free to maneuver in 
velocity and make  random depth changes at times unknown to the ob- 
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